MARIS STELLA COLLEGE (AUTONOMUS), VIJAYAWADA

A College with Potential for Excellence

NAAC Accredited & ISO 21001: 2018 Certified

PROGRAMME REGISTER 2023-2026

DEPARTMENT OF MICROBIOLOGY

INDEX

S. No	Content	Page No.
1.	Programme Outcomes (POs) 2023-26	3
2.	Programme Specific Outcomes (PSOs) 2023-26	4
3.	Course Outcomes (COs) 2023-26	5-13
4.	Mapping of COs with PSOs & POs	14-17
5.	Mapping of Course with PSOs	18-19
6.	Mapping of Courses with POs	20-21

PROGRAMME OUTCOMES (POs)

2023-26

At the end of the programme students will have:

PO1: Essential Knowledge:

Comprehensive discipline knowledge and understanding, the ability to engage with different schools of thought and to apply their knowledge in practice including in multidisciplinary or multi professional contexts.

PO2: Creative and critical thinking and problem solving abilities:

Be effective problem solvers, able to apply critical and evidence-based thinking to conceive innovative responses to future challenges.

PO3: Teamwork and communication skills:

Be able to convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

PO4: Motivation and preparation in life-long learning:

Exhibit life-long skills; broad based multiple career oriented general skills; self and field based learning skills; digital skills; social responsibility and compassionate commitment; preparedness for living, learning and working in any environment

PO5: Professionalism and leadership readiness:

Be able to engage in professional behavior and have the potential to be entrepreneurial and take leadership roles in their chosen occupations and communities.

PO6: Intercultural and ethical competency:

Be responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.

PO7: Self-awareness and emotional intelligence:

Be self-aware and reflective, flexible and resilient and act with integrity and take responsibility for their actions as empowered women.

PO8: Social responsibility:

Be sensitive to and demonstrate agency in matters of environment, gender and other social issues to promote an equitable society.

PROGRAMME SPECIFIC OUTCOMES

2023-26

At the end of the programme students will be able to:

- **PSO1:** Interpret principles, classifications, concepts, theories and mechanisms.
- **PSO2:** Analyze hypothesis, procedures, properties, experimental facts and draw conclusions.
- **PSO3:** Apply techniques in solving problems, results, sample analysis and production.
- **PSO4:** Develop communicative competence, creative and critical thinking, practical, technical and employability skills, social sensibility and responsibility.

COURSE OUTCOMES (COs)

2023-26

S. No	Sem	Course Code	Course Title	Course Outcomes			
1.	I	23SCCCCB14	Introduction to Classical Biology	CO1:Understand the fundamental principles of taxonomic classification and ecological and environmental concepts. CO2:Gain knowledge of the classification, morphology, reproduction, and physiological processes of plants CO3:Develop a comprehensive understanding of the structure, hereditary, and molecular processes of prokaryotic and eukaryotic cells CO4:Acquire knowledge of the classification, physiology, and development of animals, including aquaculture. CO5:Learn about the different types of chemical bonds, the various branches of chemistry, and their applications.			
2.	I	23SCCCAB14	Introduction to Applied Biology	the various branches of chemistry, and their applications. CO1:Learn the basics of microbiology and immunology and their roles in health, disease, and the environment CO2: Explore the structure, function and metabolism of biomolecules. CO3:Outline the fundamentals of biotechnology and genetic engineering and their applications CO4: Demonstrate different analytical tools and techniques and their applications CO5: Gain knowledge on collection, storage and analysis of biological data using statistical and bioinformatics tools.			
3.	П	23MBCCIM23	Introduction to Microbiology	CO1:Understand the historical significance of microbiology and the contributions of key scientists CO2:Recognize the classification of microorganisms and their place in the living world. CO3:Comprehend the scope and applications of microbiology, including the origin of microbial life and the distinction between eukaryotic and prokaryotic cells. CO4:Describe the characteristics of bacteria, archaea, fungi, algae, and protozoa. CO5:Describe viruses, including their nature, composition, and diversity in structure			
4.	II	23MBP1IM21	Introduction to Microbiology – Practical	CO1:Implement safety protocols, handling hazardous materials, and practicing personal protective measures. CO2:Identify microscope parts, adjusting focus and diaphragm, and accurately observing and documenting microscopic images.			

				CO3:Prepare smears, identifying different
				, , , , , , , , , , , , , , , , , , , ,
				microorganisms, and interpreting microscopic characteristics.
5.	II	23MBCCBV23	Bacteriology	CO1:Understand the concept of prokaryotic diversity and
<i>J</i> .	11	25NIBCCB V 25	& Virology	taxonomy
			a vinology	CO2: Identify and describe the salient features of various
				bacterial groups
				CO3:Comprehend the discovery, nature, and definition of
				viruses.
				CO4:Describe the replication processes of specific
				viruses
				CO5:Comprehend the concept of oncogenic viruses, and
				role of viruses in the ecosystem.
6.	II	23MBP2BV21	Bacteriology	CO1:Develop practical skills in the isolation,
			& Virology-	identification, and cultivation of bacteria.
			Practical	CO2: Acquire knowledge about the preparation of growth
				media and study host-pathogen interactions.
				CO3: Gain the ability to examine the bacteria through
7	TIT	22MDCCEM22	Enlrowestic	microscopy.
7.	III	23MBCCEM33	Eukaryotic Microorganism	CO1: Recognize the traits, categories, and reproduction
			S	processes of algae, protozoa, and fungi. CO2: Acknowledge the significance of fungi in
			8	biotechnology, as well as their applications in agriculture,
				medicine, and food production.
				CO3: Recognize the importance of algae as a food source,
				in a variety of sectors, and in the environment.
				CO4: Recognize pathogenic protozoa and learn how they
				affect the environment and public health
				_
8.	III	23MBP3EM31	Eukaryotic	CO1:Gain hands-on experience isolating, identifying, and
			Microorganism	cultivating fungus and algae.
			s - Practical	CO2:Learn how to prepare growth media and study the
				relationships between hosts and pathogens
				CO3:Acquire the capacity to use microscopy to analyze
				the vegetative and reproductive structures of particular
				genera.
9.	III	23MBCCBE33	Biomolecules	CO1: Recognize the several types of carbohydrates, such
			& Enzymology	as polysaccharides, disaccharides, monosaccharides, and
				sugar derivatives, as well as their characteristics.
				CO2:Gain knowledge on classification, structures, roles
				in cell signaling and metabolism, and aspects of lipids and
				fatty acids. CO3:Learn about primary, secondary, tertiary, and
				quaternary structures of proteins their roles
]	quaternary structures of proteins then 1010s

10.	III	23MBP4BE31	Biomolecules & Enzymology- Practical	 CO4: Acquire knowledge of base composition, nucleic acid-protein interactions, and the structure and functions of nucleic acids (DNA and RNA). Function of vitamins in metabolism. CO5:Acquire knowledge on taxonomy, structure, and modes of activity of enzymes, enzyme inhibition and the factors that affect enzyme activity. CO1:Demonstrate the ability to qualitatively identify monosaccharides and disaccharides CO2:Demonstrate proficiency in qualitatively identifying specific amino acids. CO3: Apply quantitative techniques to estimate DNA
11.	III	23MBCCMT33	Microbial & Analytical Techniques	content. CO1:Understand microscopy techniques, including bright field and electron microscopy, as well as staining methods.
				CO2: Know sterilization and disinfection techniques, such as physical methods and chemical agents. CO3: Perform tasks related to pure culture isolation, maintenance, anaerobic bacterial cultivation, and accessing Viable Non-Culturable Bacteria (VNBC). CO4: Understand spectrophotometry and chromatography techniques, including UV-visible spectrophotometry and various chromatographic methods. CO5: Gain knowledge of centrifugation, electrophoretic techniques, and the principles and applications of radioisotopes
12.	Ш	23MBP5MT31	Microbial & Analytical Techniques - Practical	CO1: Identify different types of microscopes, understand how to see microbial structures, and interpret microscope images easily. CO2: Prepare slides with stains, tell apart stained and unstained parts, and describe staining methods and how they color microbial cells. CO3: Learn how to stain bacteria, tell Gram-positive from Gram-negative, understand why Gram staining matters, and interpret stained slides.
13.	III	23MBCCCG33	Cell Biology & Genetics	 CO1: Understand basic cell theory, cell parts, the cell cycle, and the importance of the cytoskeleton in simple terms. CO2: Comprehend the roles of the cell membrane, nuclear envelope, and nucleolus, and get a basic grasp of how cancer develops. CO3: Learn about protein movement inside cells, how cells communicate, programmed cell death, stem cells, and some special types of chromosomes.

14.	III	23MBP6CG31	Cell Biology & Genetics - Practical	 CO4: Gain understanding of Mendelian genetics, including how traits are inherited and the frequencies of different versions of genes. CO5: Grasp concepts like linked genes, genetic mixing, the Hardy-Weinberg Law, how traits evolve, and how sex is determined in simple language. CO1: Master techniques for counting cells and assessing their viability accurately. CO2: Analyze mitosis and meiosis in onion root tips, recognizing their stages and importance. CO3: Identify and analyze cell ultrastructure using electron micrographs effectively.
15.	IV	23MBCCMG43	Molecular Biology & Microbial Genetics	CO1: Understand how genetic material works in cells, including its structure in different types of organisms and the importance of DNA and RNA. CO2: Explain DNA replication in prokaryotic organisms and enzymes and factors involved in the process. CO3: Recognize practical applications of extra chromosomal genetic elements like plasmids and transposons. CO4: Distinguish between traditional and contemporary views on genes, grasp gene structure, and the conversion of genetic information into functional molecules through transcription. CO5: Comprehend how genetic information is translated into proteins, and how bacteria manage the activity of their genes.
16.	IV	23MBP7MG41	Molecular Biology & Microbial Genetics - Practical	CO1: Understand isolation, purification and estimation of DNA and perform UV exposure CO2: Solve problems related to DNA and RNA characteristics, transcription, and translation processes. CO3: Prepare gels, load DNA samples, visualize DNA bands, analyze fragment size, and understand the principles of electrophoresis.
17.	IV	23MBCCPM43	Microbial Physiology & Metabolism	CO1: Understand the nutritional requirements of microorganisms and the different methods of nutrient uptake CO2: Comprehend microbial growth, including the definition of growth, generation time, and the different phases of growth. CO3: Gain knowledge of thermodynamics in biological systems, including concepts of free energy, enthalpy, and entropy. CO4: Understand microbial respiration, including aerobic and anaerobic respiration, chemoautotrophy, and fermentative modes.

				CO5: Differentiate the processes of oxygenic and anoxygenic photosynthesis	
18.	IV	23MBP8PM41	Microbial Physiology & Metabolism - Practical	CO1: Understand how temperature and pH affect bacterial growth. CO2: Learn colony counting techniques for microbia enumeration. CO3: Analyze growth curve data to understand bactering growth patterns.	
19.	IV	23MBCCBB43	r DNA Technology, Biostatistics & Bioinformatics	CO1: Learn genetic engineering principles like restriction endonucleases and DNA transformation techniques. CO2: Understand vectors, basics of polymerase chain reaction, and applications of genetic engineering in industry, agriculture, and medicine. CO3: Gain knowledge of blotting techniques, DNA labeling, DNA sequencing, and basics of intellectual property rights. CO4: Learn about bioinformatic resources, sequence databases, sequence alignment, and the use of biostatistics in data analysis. CO5: Develop skills in measuring central tendency and dispersion, understanding types of data, and utilizing biostatistical software for analysis.	
20.	IV	23MBP9BB41	r DNA Technology, Biostatistics & Bioinformatics - Practical	CO1: Perform plasmid DNA isolation and gel electrophoresis. CO2: Understand DNA fingerprinting principles and applications for genetic profiling. CO3: Utilize nucleic acid and protein databases for sequence analysis.	
21.	V	23MBCCIM53	Immunology & Medical Microbiology	CO1: Explain the basics of Immunology and how the immune system identifies self and non-self CO2: Describe how innate and adaptive immunity work together to fight infections CO3: Understand how the immune system responds to a wide range of antigens. CO4: Learn the principles of diagnostic microbiology. CO5: Relate disease symptoms to their causes and identify pathogens.	
22.	V	23MBP10IM51	Immunology & Medical Microbiology - Practical	CO1: Perform antigen-antibody reactions. CO2: Conduct biochemical tests to identify bacteria. CO3: Perform antibiotic sensitivity testing and identification of microorganisms	
23.	V	23MBCCEB53	Environmental Biotechnology	CO1: Explore ecosystems and the microflora in soil, water, atmosphere, and living organisms. CO2: Learn about microbial interactions and focusing on plant-microbe and animal-microbe relationships.	

				CO3: Understand the role of microbes in the carbon,
				nitrogen, phosphorus, and sulfur cycles CO4: Study solid waste disposal, liquid waste treatment,
				and microbial bioremediation
				CO5: Apply microorganisms in bioremediation
				processes.
24.	V	23MBP11EB51	Environmental	CO1: Assess soil properties and understand their effects
			Biotechnology	on plant growth and soil fertility.
			- Practical	CO2: Isolate bacteria and fungi from soil samples and
				understand nutrient cycling and plant health.
				CO3: Measure MPN, BOD and COD in wastewater in
				assessing pollution levels and wastewater treatment
2.5	**	20) (DEG11D) (50	70	effectiveness.
25.	V	23MBEC11PM53	Pharmaceutical	CO1: Understand biosafety and Manufacturing Practices
			Microbiology	(cGMP) in pharmaceutical industry
				CO2:Explain methods to detect microorganisms in pharmaceuticals.
				CO3: Describe molecular techniques for pathogen
				detection in quality control.
				CO4: Design media to identify microbes in
				pharmaceutical products.
				CO5: Follow and apply safety practices in pharmaceutical
				product development
26.	V	23MBP1211PM51	Pharmaceutical	CO1: Conduct sterility tests for equipment.
			Microbiology -	CO2: Apply disinfection and sterility methods to
			Practical	instruments in the lab.
27	X 7	22MDEC12AM52	Amaliad	CO3: Check sterility of pharmaceutical products.
27.	V	23MBEC12AM53	Applied Microbiology	CO1: Identify opportunities for entrepreneurship and evaluate their potential.
			Wherobiology	CO2:Understand the production and economics of
				fermentation products.
				CO3:Explain how biofertilizers and mushrooms are
				produced.
				CO4: Describe the processes of baking and brewing.
				CO5: Prepare a detailed project report (DPR) and
				understand patenting.
28.	V	23MBP1312AM51	Applied	CO1: Create microbial consortia for composting.
			Microbiology -	CO2:Report on the production of mushrooms or
			Practical	biofertilizers.
29.	V	23MBEC21DM53	Diagnostic	CO3: Develop a sample detailed project report (DPR). CO1: Understand Collection of clinical samples for
29.	'	23WIDEC21DWI33	Microbiology	diagnosis.
	[Microbiology	·
1				1 (1)2: Learn about microscopic and culture methods for i
				CO2: Learn about microscopic and culture methods for diagnosis.
				<u> </u>

				CO4: Understand antimicrobial sensitivity and resistance.
				CO5: Learn about advances in diagnostic microbiology.
30.	V	23MBP1421DM51	Diagnostic	CO1: Collect, label, and transport clinical specimens.
			Microbiology -	CO2: Isolate pure bacterial cultures and identify common
			Practical	bacteria
				CO3: Maintain and preserve stock cultures.
31.	V	23MBEC22IM53	Industrial	CO1: Identify important microorganisms used in
			Microbiology	industries.
				CO2: Learn methods to screen biologically important
				microorganisms.
				CO3: Choose suitable fermentation methods for
				production.
				CO4: Understand key concepts in industrial
				microbiology, important microbes and its metabolites.
				CO5: Explain upstream and downstream bioprocessing
32.	V	23MBP1522IM51	Industrial	steps. CO1: Understand and demonstrate microbial diversity by
32.	V	25WIDI 1322IWI31	Microbiology -	isolating microorganisms from natural environments.
			Practical	CO2: Observe microorganisms in fermented foods under
			Tractical	a microscope, prepare fermented products and study
				physical and chemical changes.
				CO3: Perform small-scale microbial production organic
				acids and estimate the yield.
33.	V	23MBEC31AM53	Agricultural	CO1: Study soil as a habitat for microorganisms, their
			Microbiology	diversity, and interactions.
				CO2: Understand microbial pathogenicity, virulence
				factors and plant defense mechanisms.
				CO3: Learn methods for managing plant diseases,
				including regulatory, chemical and biological approaches.
				CO4: Study key plant diseases caused by fungi, bacteria,
				viruses and viroids, focusing on their causes, symptoms. CO5: Explore plant growth-promoting bacteria,
				biofertilizers, mycorrhizae and their role in improving
				plant growth.
34.	V	23MBP1631AM51	Agricultural	CO1: Understand soil composition, water activity, pH,
	·		Microbiology -	soil profiles and soil fertility.
			Practical	CO2: Identify microorganisms present in soil and learn
				about Rhizobium's characteristics.
				CO3: Demonstrate field application techniques and
				identify plant diseases.
35.	V	23MBEC32DM53	Food & Dairy	CO1: Understand factors affecting microbial growth,
			Microbiology	food contamination, and sources of contamination.
				CO2: Learn about the microflora in milk, contamination
				of raw milk and butter, and spoilage of various foods.
				CO3: Use dairy starter cultures in fermented dairy
				products, other fermented foods, and probiotics.

				CO4:Differentiate between foodborne diseases, intoxications, and infections.
				CO5: Apply food sanitation practices, control measures, follow HACCP guidelines, and test for pathogens in foods.
36.	V	23MBP1732DM51	Food & Dairy Microbiology - Practical	CO1: Learn MBRT method, standard plate count and MPN to assess milk quality. CO2: Evaluate the efficiency of milk pasteurization by enzymatic reactions. CO3: Isolate and identify food spoilage microorganisms and prepare fermented dairy products.

Mapping of COs with PSOs & POs

S. No	Sem	Course Code	Course Title	COs	PSOs	POs
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Introduction to	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
1.	I	23SCCCCB14	Classical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Biology	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Introduction to	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
2.	I	23SCCCAB14	Applied Biology	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Tippined Biology	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
		23MBCCIM23	Introduction to	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
3.	II		Microbiology	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
		23MBP1IM21	Introduction to	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
4.	II		Microbiology –	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
			Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
			Bacteriology &	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
5.	II	23MBCCBV23	Virology	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
				CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
			Bacteriology &	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
6.	II	23MBP2BV21	Virology-	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
			Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
7.	III	23MBCCEM33	Eukaryotic	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Microorganisms	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4

			Eukaryotic	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
8.	Ш	23MBP3EM31	Microorganisms	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
			- Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Biomolecules &	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
9.	Ш	23MBCCBE33	Enzymology	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Elizymology	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Biomolecules &	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
10	III	23MBP4BE31	Enzymology-	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
			Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Microbial &	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
11	Ш	23MBCCMT33	Analytical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Techniques	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Microbial &	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
12	III	23MBP5MT31	Analytical	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
	111		Techniques - Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Cell Biology &	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
13	Ш	23MBCCCG33	Genetics	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Genetics	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Cell Biology &	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
14	Ш	23MBP6CG31	Genetics -	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
			Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
			Molecular	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
15	IV	23MBCCMG43	Biology &	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
	1 1		Microbial	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Genetics	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
					-	

			Molecular	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
			Biology &	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
16	IV	23MBP7MG41	Microbial			
			Genetics -	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
			Practical			
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Microbial	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
17	IV	23MBCCPM43	Physiology &	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Metabolism	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
			Microbial	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
18	IV	23MBP8PM41	Physiology &	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
	1 V		Metabolism - Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
			r DNA	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO5
			Technology,	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO5
19	IV	23MBCCBB43	Biostatistics &	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO5
			Bioinformatics	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO5
			2.5	CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO5
			r DNA	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5
			Technology,	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5
20	IV	23MBP9BB41	Biostatistics & Bioinformatics - Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
			Immunology &	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
21	V	23MBCCIM53	Medical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
			Microbiology	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
			Immunology &	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
22	V	23MBP10IM51	Medical	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
				CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8

			Microbiology -			
			Practical			
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
			Environmental	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
23	V	23MBCCEB53		CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
			Biotechnology	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
			Environmental	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
24	V	23MBP11EB51	Biotechnology -	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
			Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
	V	23MBEC11PM53	Pharmaceutical Microbiology	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
25				CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
				CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
	V	23MBP1211PM51	Pharmaceutical	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
26			Microbiology -	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
			Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
	V	23MBEC12AM53	Applied Microbiology	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
27				CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4
		23MBP1312AM51	Applied	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
28	V		Microbiology -	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
			Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4
		23MBEC21DM53		CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
	V		Diagnostic Microbiology	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
29				CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
				CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8
30	V	v 23MBP1421DM51		CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8
	V			CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8

			Diagnostic				
	Mid		Microbiology -	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8	
			Practical				
				CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5	
			Industrial	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5	
31	V	23MBEC22IM53	Microbiology	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5	
			Wherobiology	CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5	
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5	
			Industrial	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5	
32	V	23MBP1522IM51	Microbiology -	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5	
			Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO5	
		23MBEC31AM53	Agricultural Microbiology	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
	V			CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
33				CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
				CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
		23MBP1631AM51	Agricultural	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8	
34	V		Microbiology -	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8	
			Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8	
		23MBEC32DM53	Food & Dairy	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
				CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
35	V		Microbiology	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
				CO4	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
				CO5	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
		V 23MBP1732DM51	Food & Dairy	CO1	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO3, PO4, PO8	
36	V		Microbiology -	CO2	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	
			Practical	CO3	PSO1, PSO2,PSO3,PSO4	PO1, PO2, PO4, PO8	

Mapping of Courses with PSOs

	PSO1	PSO2	PSO3	PSO4	
Course Title	Qualitative	Practical and	Logical and	Teamwork and	
	Analysis	Analytical Skills	Critical Thinking	Communication	
Introduction to Classical Biology (CB)	✓	✓	✓	✓	
Introduction to Applied Biology (AB)	✓	✓	✓	✓	
Introduction to Microbiology (IM)	✓	✓	✓	✓	
Introduction to Microbiology-Practical (IM-P)	✓	✓	✓	✓	
Bacteriology & Virology (BV)	✓	✓	✓	✓	
Bacteriology & Virology- Practical (BV-P)	✓	✓	✓	✓	
Eukaryotic Microorganisms (EM)	✓	✓	√	✓	
Eukaryotic Microorganisms – Practical (EM-P)	✓	✓	✓	✓	
Biomolecules & Enzymology (BE)	✓	✓	√	✓	
Biomolecules & Enzymology- Practical (BE-P)	✓	✓	✓	✓	
Microbial & Analytical Techniques (MT)	✓	✓	✓	✓	
Microbial & Analytical Techniques – Practical (MT-P)	✓	✓	✓	✓	
Cell Biology & Genetics (CG)	✓	✓	✓	✓	
Cell Biology & Genetics – Practical (CG-P)	✓	✓	✓	✓	
Molecular Biology & Microbial Genetics (MG)	✓	✓	✓	✓	
Molecular Biology & Microbial Genetics – Practical (MG-P)	✓	✓	✓	✓	
Microbial Physiology & Metabolism (PM)	✓	✓	✓	✓	
Microbial Physiology & Metabolism – Practical (PM-P)	✓	✓	✓	✓	
r DNA Technology, Biostatistics & Bioinformatics (BB)	✓	✓	✓	✓	

"DNIA T1 D'4-4'-4' 0				
r DNA Technology, Biostatistics & Bioinformatics – Practical (BB-P)	✓	✓	✓	✓
Immunology & Medical Microbiology (IM)	✓	✓	√	✓
Immunology & Medical Microbiology – Practical (IM-P)	✓	✓	✓	✓
Environmental Biotechnology (EB)	✓	✓	✓	✓
Environmental Biotechnology – Practical (EB-P)	✓	√	✓	✓
Pharmaceutical Microbiology (PM)	✓	✓	✓	✓
Pharmaceutical Microbiology – Practical (PM-P)	✓	✓	✓	✓
Applied Microbiology (AM)	✓	✓	✓	✓
Applied Microbiology – Practical (AM-P)	✓	✓	✓	✓
Diagnostic Microbiology (DM)	✓	✓	✓	✓
Diagnostic Microbiology – Practical (DM-P)	✓	✓	✓	✓
Industrial Microbiology (IMB)	✓	✓	✓	✓
Industrial Microbiology – Practical (IMB-P)	✓	✓	✓	✓
Agricultural Microbiology (AM)	✓	✓	✓	✓
Agricultural Microbiology – Practical (AM-P)	✓	✓	✓	✓
Food & Dairy Microbiology (DM)	✓	✓	✓	✓
Food & Dairy Microbiology – Practical (DM-P)	✓	✓	✓	✓

Mapping of Courses with POs

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
СВ	√	√		√				
AB	√	√		✓				
IM	√	√		✓				
IM-P	√	√	✓	✓				
BV	√	√		√				✓
BV-P	√	√	✓	√				✓
EM	√	√		✓				
EM-P	√	√	✓	√				
BE	√	√		✓				
BE-P	√	√	✓	✓				
MT	√	√		✓				
MT-P	√	√	✓	√				
CG	√	√		√				
CG-P	√	√	✓	√				
MG	√	√		√				
MG-P	√	√	✓	√				
PM	√	√		√				
PM-P	√	√	✓	√				
BB	✓	√		√	√			
BB-P	√	√	✓	√	√			
IMB	√	√		√				√
IMB-P	√	√	✓	√				✓
EB	√	√		√				✓
EB-P	√	√	✓	√				✓
PM	✓	✓		✓				√
PM-P	√	√	✓	✓				√

AM	✓	✓		✓			
AM-P	✓	✓	✓	✓			
DM	✓	✓		✓			✓
DM-P	✓	✓	✓	✓			✓
IM	✓	✓		✓	✓		
IM-P	✓	✓	✓	✓	✓		
AM	✓	✓		✓			✓
AM-P	✓	✓	✓	✓			✓
DMB	✓	✓		✓			√
DMB-P	✓	✓	✓	✓			✓