MARIS STELLA COLLEGE (AUTONOMOUS), VIJAYAWADA A College with Potential for Excellence ISO 9001: 2015 Certified


## PROGRAMME REGISTER

2020-2023
DEPARTMENT OF STATISTICS

## INDEX

| S. No. | Content | Page No. |
| :---: | :--- | :---: |
| 1. | UG Programme Offered | 3 |
| 2. | Programme Outcomes(POs):2020-23 | 4 |
| 3. | Programme Specific Outcomes (PSOs):2020-23 | 5 |
| 4. | Course Outcomes(COs): 2020-23 | 6 |
| 5. | Mapping of COs with PSOs \& POs | 12 |
| 6. | Mapping of Courses with PSOs | 17 |
| 7. | Mapping of Courses with POs | 18 |

## UG PROGRAMME OFFERED

| S. No. | Programme | Combination offered | Program <br> me Code |
| :---: | :---: | :---: | :---: |
| 1 | B.Sc. | Mathematics, Statistics, Computer Science (MSCs) | 304 |

## PROGRAMME OUTCOMES (POs)

2020-2023

## At the end of the programme students will have:

## PO1: Essential Knowledge:

Comprehensive discipline knowledge and understanding, the ability to engage with different schools of thought and to apply their knowledge in practice including in multidisciplinary or multi-professional contexts.

## PO2: Creative and critical thinking and problem solving abilities:

Be effective problem solvers, able to apply critical and evidence-based thinking to conceive innovative responses to future challenges.

## PO3: Teamwork and communication skills:

Be able to convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

## PO4: Motivation and Preparation in life-long learning:

Exhibit life-long skills;broad based multiple career oriented general skills;self and field based learning skills;digital skills; social responsibility and compassionate commitment; preparedness for living; learning and working in any environment

## PO5: Professionalism and leadership readiness:

Be able to engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations and communities.

## PO6: Intercultural and ethical competency:

Be responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.

## PO7: Self-awareness and emotional intelligence:

Be self-aware and reflective, flexible and resilient and act with integrity and take responsibility for their actions as empowered women.

## PO8: Social responsibility:

Be sensitive to and demonstrate agency in matters of environment, gender and other social issues to promote an equitable society.

## PROGRAMME SPECIFIC OUTCOMES (PSOs) <br> 2020-2023

## For Physical Sciences:

At the end of the programme the student will be able to
PSO1: Interpret the principles, classifications, concepts, theories and mechanisms.
PSO2: Analyze hypothesis, procedures, properties, experimental facts and draw conclusions.
PSO3: Apply techniques in solving problems, results, sample analysis and production.
PSO4: Develop communicative competence,creative and critical thinking, practical, technical and employability skills, social sensibility and responsibility.

## For Commerce, Management studies \& BBA:

PSO1: Demonstrate fundamental knowledge of domain areas.
PSO2: Acquire competence to apply and communicate principles, techniques and skills to analyze and interpret texts and data and draw conclusions.

PSO3: Demonstrate problem-solving skills in real life situations by drawing from imbibe theories and principles

PSO4: Develop communicative competence, creative and critical thinking, practical, technical and employability skills, social sensibility and responsibility.

## Course Outcomes (COs)

2020-2023

| $\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$ | Semest er | Course Code | Course Title | Course Outcomes (COs) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | I | 20STCCDS13 | Descriptive Statistics | CO1: Interpret diagrammatic data presentation for common understanding |
|  |  |  |  | CO2: Determine the reliability of an average and compare variability of two or more series and solve problems using moments. |
|  |  |  |  | CO3: Interpret bivariate data and apply curve fitting, correlation and regression methods to forecast business data. |
|  |  |  |  | CO4: Differentiate between quantitative and qualitative data and apply association and contingency techniques using attributes. |
| 2 | I | 20STP1DS12 | Descriptive Statistical Methods-Pract ical | CO1: Interpret diagrammatic data presentation, determine the reliability of an average using central tendency measures and compare the variability of two or more series. |
|  |  |  |  | CO2: Apply the curve fitting, correlation and regression methods to the given data |
|  |  |  |  | CO3: Apply Association and Contingency techniques for qualitative data using Attributes |
| 3 | II | 20STCCPD23 | Probability Theory \& Distributions | CO1: Explain the basics of probability, types, theorems and applications in real life. |
|  |  |  |  | CO2: Interpret Univariate \& bi-variate random variables. |
|  |  |  |  | CO3: Apply mathematical expectations applications to real data. |
|  |  |  |  | CO4: Identify different real life problems and apply discrete and continuous distributions to |


|  |  |  |  | draw valid inferences. |
| :--- | :--- | :--- | :--- | :--- |
| 4 |  |  |  |  |


| 8 | III |  |  |  |
| :--- | :--- | :--- | :--- | :--- |


| 12 | IV | 20STP5AS42 | Applied Statistical Methods-Pract ical | CO1: Apply Trend derivation methods to different chronological series in real life situations. |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | CO2: Analyze the economy and standard of living in different countries using Index Numbers |
|  |  |  |  | CO3: Interpret the methods of obtaining birth \& death rates and construct the Life table for living beings from different age groups |
| 13 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 1 \end{aligned}$ | 20STSEC11OR3 | Operations <br> Research I | CO1: Identify and develop operational research models from the verbal description of the real system. |
|  |  |  |  | CO2: Understand the mathematical tools that are needed to solve optimization problems |
|  |  |  |  | CO3: Differentiate between IBFS and OBFS and obtain the solution for LPP |
|  |  |  |  | CO4: Differentiate the primal and dual and solve the given LPP and to derive the primal-dual relationship |
| 14 | V/VI <br> Set 1 | 20STP611OR2 | Operations <br> Research <br> I-Practical | CO1: Construct a linear programming problem to the given data. |
|  |  |  |  | CO2: Apply the mathematical tools to solve optimization problems |
|  |  |  |  | CO3: Calculate IBFS and OBFS to the given LPP |
| 15 | V/VI <br> Set 1 | 20STSEC12OR3 | Operations Research II | CO1: Analyze various types of deterministic models like transportation Problem and Assignment problem. |
|  |  |  |  | CO2: Minimize the total elapsed time in an industry by efficient allocation of suitable persons. |
|  |  |  |  | CO3: Evaluate real time problems related to Queues, CPM and PERT. |
|  |  |  |  | CO4: Demonstrate and solve the simple models of Game theory. |
| 16 | V/VI | 20STP712OR2 | Operations | CO1: Apply and analyze various types of |


|  | Set 1 |  | Research <br> II-Practical | deterministic models like transportation Problem and Assignment problem |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | CO2: Maximize the work time and profits of an industry by efficient allocation of jobs to the suitable persons |
|  |  |  |  | CO3: Minimize the elapsed time of the projects by using CPM, PERT and queuing models and solve simple game models. |
| 17 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 2 \end{aligned}$ | 20STSEC21QC3 | Statistical Quality \& Process control | CO1: Differentiate the concepts of Quality Control(SQC) and Statistical Process Control (SPC) |
|  |  |  |  | CO2: Construct different control charts for Variables variables(x-bar, Rcharts) and attributes(p,np and c charts) |
|  |  |  |  | CO3: Identify different acceptance sampling plans and differentiate them. |
|  |  |  |  | CO4: Evaluate the probabilities of sampling plans using Binomial and Poisson distributions |
|  |  |  |  | CO5: Understand the structure of OC and ASN curves |
| 18 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 2 \end{aligned}$ | 20STP621QC2 | Statistical <br>  <br> Process <br> control <br> -Practical | CO1: Construct the control charts for variables and attributes |
|  |  |  |  | CO2: Infer whether the process is within control for the given data by calculating the OC, ASN curves |
|  |  |  |  | CO3: Determine the single and double sampling plans. |
| 19 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 2 \end{aligned}$ | 20STSEC22CR3 | Computational <br>  <br> R <br> Programming | CO1: Understand the basic functioning of a computer |
|  |  |  |  | CO2: Acquire skills in handling business and organizational data using Excel |
|  |  |  |  | CO3: Perform simple analytics using Excel |
|  |  |  |  | CO4: Understand the R programming language and its importance in analyzing the data |
|  |  |  |  | CO5: Analyze the real life situations statistically using R language. |


| 20 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 2 \end{aligned}$ | 20STP722CR2 | Computational Techniques \& R <br> ProgrammingPractical | CO1: Perform simple analytics using Excel |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | CO2: Apply R programming language the data pertaining to different fields |
|  |  |  |  | CO3: Analyze the real life situations statistically using R language. |
| 21 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 3 \end{aligned}$ | $\begin{gathered} \text { 20STSEC31EM } \\ 3 \end{gathered}$ | Econometrics | CO1: Understand various important econometric models |
|  |  |  |  | CO2: Understand the assumptions upon which different econometric methods are based and their implications |
|  |  |  |  | CO3: Explain core concepts and techniques in econometrics, with a special focus on the classical linear regression model |
|  |  |  |  | CO4: Interpret heteroscedasticity and its inherent concepts including its consequences |
| 22 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 3 \end{aligned}$ | 20STP631EM2 | EconometricsPractical | CO1: Estimate the parameters of general linear trend. |
|  |  |  |  | CO2: Forecast the general linear trend |
|  |  |  |  | CO3: Diagnose and evaluate the consequences of Multicollinearity, Autocorrelation and Heteroscedasticity |
| 23 | V/VI <br> Set 3 | 20STSEC32RA3 | Regression Analysis | CO1: Understand Linear and Multiple Linear regression |
|  |  |  |  | CO2: Analyze the relationship between a single dependent (criterion) variable and several independent (predictor) variables |
|  |  |  |  | CO3: Apply statistical tests of hypotheses on regression coefficients |
|  |  |  |  | CO4: Interpret the best regression model |
| 24 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 3 \end{aligned}$ | 20STP732RA2 | Regression Analysis-Pract ical | CO1: Analyze the relationship between a single dependent (criterion) variable and several independent (predictor) variables |


|  |  |  | CO2: Apply statistical tests of hypotheses on regression <br> coefficients |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  | CO3: Derive the best regression model |

## Mapping of Cos with PSOs \& POs

| $\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$ | Sem | Course Code | Course Title | COs | PSOs | POs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | I | 20STCCDS13 | Descriptive <br> Statistics | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO 2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO 4 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
| 2 | I | 20STP1DS12 | Descriptive Statistical Methods-Pr actical | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO 2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
| 3 | II | 20STCCPD23 | Probability <br>  <br> Distribution <br> s | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO 2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
|  |  |  |  | CO3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO 4 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3.PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
| 4 | II | 20STP2PD22 | Probability <br> Distributions-Pr actical | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO 2 | PSO1,PSO2, PSO3,PSO4 | PO1,PO2,PO3, PO 4 |
|  |  |  |  | CO3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
| 5 | II | 20LSCES2 | Elementary Statistics | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO 2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |


|  |  |  |  | CO 3 | PSO1,PSO2, <br> PSO3,PSO4 | PO1,PO2,PO3,PO4 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | III |  |  |  |  |  |


|  |  |  |  | CO 3 | PSO1,PSO2, <br> PSO 3,PSO4 | PO1,PO2,PO3,PO4 |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| 11 | IV |  |  |  |  |  |


|  |  |  |  | CO 3 | PSO1,PSO2, <br> PSO 3,PSO4 | PO1,PO2,PO3,PO4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | CO 4 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
| 16 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 1 \end{aligned}$ | $\begin{gathered} \text { 20STP712OR } \\ 2 \end{gathered}$ | Operations <br> Research <br> II-Practical | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO 2 | PSO1,PSO2, <br> PSO 3,PSO4 | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO3 | PSO1,PSO2, <br> PSO 3,PSO4 | PO1,PO2,PO3,PO4 |
| 17 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 2 \end{aligned}$ | $\begin{aligned} & \text { 20STSEC21Q } \\ & \text { C3 } \end{aligned}$ | Statistical Quality \& Process control | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO 2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO 3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO 4 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO5 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
| 18 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 2 \end{aligned}$ | $\begin{gathered} \text { 20STP621QC } \\ 2 \end{gathered}$ | Statistical <br>  <br> Process control-Practical | CO1 | $\begin{array}{\|l} \text { PSO1,PSO2, } \\ \text { PSO 3,PSO4 } \end{array}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO3 | PSO1,PSO2, <br> PSO 3,PSO4 | PO1,PO2,PO3,PO4 |
| 19 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 2 \end{aligned}$ | $\begin{gathered} \text { 20STSEC22C } \\ \text { R3 } \end{gathered}$ | Computational <br> Techniques \& R <br> Programming | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO 2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO 4 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO 5 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |


| 20 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 2 \end{aligned}$ | $\begin{gathered} \text { 20STP722CR } \\ 2 \end{gathered}$ | Computational <br> Techniques \& R <br> Programming-Pr <br> actical | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | CO2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3,PO4 |
|  |  |  |  | CO3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
| 21 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 3 \end{aligned}$ | $\begin{gathered} \text { 20STSEC31E } \\ \text { M3 } \end{gathered}$ | Econometrics | CO1 | PSO1,PSO2, PSO 3,PSO4 | PO1,PO2,PO3, PO 4 |
|  |  |  |  | CO 2 | PSO1,PSO2, <br> PSO 3,PSO4 | PO1,PO2,PO3, PO 4 |
|  |  |  |  | CO3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO 4 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
| 22 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 3 \end{aligned}$ | $\begin{gathered} \text { 20STP631EM } \\ 2 \end{gathered}$ | Econometrics-Pr actical | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
|  |  |  |  | CO 2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
|  |  |  |  | CO3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
| 23 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 3 \end{aligned}$ | $\begin{gathered} \text { 20STSEC32R } \\ \text { A3 } \end{gathered}$ | Regression Analysis | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO 2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
|  |  |  |  | CO3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
|  |  |  |  | CO4 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO4 |
| 24 | $\begin{aligned} & \text { V/VI } \\ & \text { Set } 3 \end{aligned}$ | $\begin{gathered} \text { 20STP732RA } \\ 2 \end{gathered}$ | Regression Analysis-Practic al | CO1 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
|  |  |  |  | CO 2 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |
|  |  |  |  | CO3 | $\begin{aligned} & \text { PSO1,PSO2, } \\ & \text { PSO 3,PSO4 } \end{aligned}$ | PO1,PO2,PO3, PO 4 |

Mapping of Courses with PSOs

| S. No. | Course | PSO1 | PSO2 | PSO3 | PSO4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 20STCCDS 13 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 2 | 20STP1DS12 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 3 | 20STCCPD23 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 4 | 20STP2PD22 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 5 | 20LSCES2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 6 | 20STCCSI33 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 7 | 20STP3SI32 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 8 | 20STCCBS34 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 9 | 20STCCSD43 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 10 | 20STP4SD42 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 11 | 20STCCAS43 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 12 | 20STP5AS42 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 13 | 20STSEC11OR3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 14 | 20STP611OR2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 15 | 20STSEC12OR3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 16 | 20STP712OR2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 17 | 20STSEC21QC3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 18 | 20STP621QC2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 19 | 20STSEC22CR3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 20 | 20STP722CR2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 21 | 20STSEC31EM3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 22 | 20STP631EM2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 23 | 20STSEC32RA3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| 24 | 20STP732RA2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

Mapping of Courses with POs

| S. No. | Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | DS | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 2 | DS-P 1 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 3 | PD | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 4 | PD- P2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 5 | ES- LSC | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 6 | SI | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 7 | SI- P3 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 8 | BS | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 9 | SD | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 10 | SD-P4 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 11 | AS | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 12 | AS-P5 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 13 | OR I | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 14 | OR I-P6 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 15 | OR II | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 16 | OR II-P7 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 17 | QC | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 18 | QC-P6 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 19 | CR | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 20 | CR-P7 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 21 | EM | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 22 | EM-P6 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 23 | RA | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| 24 | RA-P7 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |

