MARIS STELLA COLLEGE (AUTONOMOUS),VIJAYAWADA-8 (Affiliated to Krishna University, Machilipatnam) SYLLABUS

Subject: Computer ScienceSemester: IICourse Title: Data Structures using CCourse Code: 22CSCCDS23No. of Hours: 60LTP: 400Credits: 3

Objectives

- To familiarize the fundamentals of data structures.
- To impart knowledge of complexity of basic operations like insert, delete, search on these data structures.
- To build the ability to choose a data structure to suitably model any data used in computer applications.

Course Outcomes

CO1: Identify data structures to represent data items in the real world.

- **CO2:** Analyse the working principles and applications of data structures.
- **CO3:** Develop programs by applying various operations on data structures.
- **CO4:** Apply various sorting, searching and hashing techniques.

UNIT-I

(12 Hrs.)

Introduction to Data Structures: Introduction to the Theory of Data Structures, Data Representation, Advantages of Data Structures, Operations of Data Structures, Abstract Data Types, Classification of Data Types: Primitive Data Types, Non - Primitive Data Types.

Principles of Programming and Analysis of Algorithms: Algorithms, Characteristics of an algorithm, Factors of an algorithm, Complexity, Algorithm Analysis, Approaches of algorithm programming exercises.

UNIT-II

(12 Hrs.)

Arrays: Introduction to Linear and Non- Linear Data Structures, One-Dimensional Arrays, Array Operations, Two- Dimensional arraysprogramming exercises.

Linked Lists: Introduction to Lists and Linked Lists, Dynamic Memory Allocation, Basic Linked List Operations, Doubly Linked List, Circular Linked List - programming exercises.

UNIT-III

Stacks: Introduction to Stacks, Representation of Stacks through Arrays, Representation of Stacks through Linked Lists, Applications of Stacks - programming exercises.

Queues: Introduction, Representation of Queues, Circular Queues, Double Ended Queues- Deques, Priority Queues, Application of Queues - programming exercises.

UNIT-IV

Binary Trees: Introduction to Non- Linear Data Structures, Introduction Binary Trees, Types of Trees, Basic Definition of Binary Trees, Properties of Binary Trees, Representation of Binary Trees, Operations on a Binary Search Tree, Binary Tree Traversal, Applications of Binary Tree, Heap - programming exercises.

UNIT- V

Sorting and Searching: Sorting – An Introduction, Bubble Sort, Insertion Sort, Merge Sort, Searching – An Introduction, Linear or Sequential Search, Binary Search - programming exercises.

Graphs: Introduction to Graphs, Terms Associated with Graphs, Sequential Representation of Graphs, Linked Representation of Graphs, Traversal of Graphs : DFS & BFS, Spanning Trees, Application of Graphs - programming exercises.

Co-Curricular Activities

- Assignments on problem solving
- Student presentations and seminars
- Online quizzes

Prescribed Books

- 1. "Data Structures using C", ISRD group Second Edition, TMH
- 2. "Data Structures through C", Yashavant Kanetkar, BPB Publications
- 3. "Data Structures Using C" Balagurusamy E. TMH

Reference Book

 E Balagurusamy – Programming in ANSIC – Tata McGraw-Hill publications.

(12 Hrs.)

(12 Hrs.)

(12 Hrs.)

MARIS STELLA COLLEGE (AUTONOMOUS), VIJAYAWADA – 8 (Affiliated to Krishna University)

Blueprint

Subject: Computer Science Course Title: Data Structures using C Time: 3 Hrs.

Semester: II Course Code: 22CSCCDS23 Max. Marks: 100

 $20 \times 1 = 20M$

SECTION – A

Answer **ALL** questions

Q. No.	UNIT	Marks Weightage	RBT LEVEL
1	l	1	
2	I	1	
3		1	
4		1	
5		1	No. of questions to be set
6	111	1	RBT1 – 10
7	IV	1	RBT2 – 10
8	IV	1	
9	V	1	
10	V	1	
11	I	1	
12	I	1	
13		1	
14		1	
15		1	
16		1	
17	IV	1	
18	IV	1	
19	V	1	
20	V	1	

SECTION – B

Answer any **FOUR** questions

Q. No.	UNIT	Marks Weightage	RBT LEVEL		
21	I	8	No. of questions to be set		
22	II	8	RBT1 – 3		
23		8	RBT2 – 3		
24	IV	8			
25	V	8			
26	1 / 11 / 111 / 1V / V	8			
SECTION – C					

Answer any **FOUR** questions

 $4 \times 12 = 48M$

Q. No.	UNIT	Marks Weightage	RBT LEVEL
27	I	12	No. of questions to be
28	II	12	set
29	III	12	RBT1 – 3
30	IV	12	RBT2 – 3
31	V	12	
32	I / II / III / IV / V	12	

 $4 \times 8 = 32M$

MARIS STELLA COLLEGE (AUTONOMOUS), VIJAYAWADA – 8 (Affiliated to Krishna University)

Model Question Paper

Subject: Computer Science

Semester: II

Course Code: 22CSCCDS23 Max. Marks: 100

SECTION – A

Answer **ALL** questions

Time: 3 Hrs.

 $20 \times 1 = 20 M$

- 1. _____ is a storage that is used to store and organize data.
 - A. Data
 - B. Information
 - C. Raw facts and figures

Course Title: Data Structures using C

- D. Data structure
- 2. Accessing each record exactly once so that the certain elements in the records may be processed is called _____.
 - A. Inserting
 - B. Deleting
 - C. Searching
 - D. Traversing
- 3. The memory location of the first element of the array starts with and index value____.
 - A. 0
 - B. 1
 - C. 0 and 1
 - D. 0 or 1
- 4. Single linked list or one way consists of Nodes, thus Node is partitioned in to two parts, they are ____ and ___.
 - A. Order and preference
 - B. Information and Address of the next node
 - C. Data and Invalid operator
 - D. Stack and Queue
- 5. In the representation of the Stack in memory, if TOP=3 and MAX STK=8, ____ are the free rooms left in the stack.
 - A. 3
 - B. 8
 - C. 5
 - D. 0
- 6. A Circular queue or a ring buffer is a linear queue based on _____ A. LIFO

- B. FIFO
- C. LILO
- D. FILO
- 7. To represent a binary tree of depth 'n' using array representation, in single dimensional array with a maximum size of _____.
 - A. 2n 1
 - B. 2n + 1
 - C. n + 2
 - D. n 2
- 8. A _____ is a hierarchical data structure that naturally hierarchically stores the information.
 - A. Node
 - B. Tree
 - C. Root
 - D. Child
- 9. Acronym of BFS is _____.
 - A. Breadth First Search
 - B. Breadth Forth Search
 - C. Binary First Search
 - D. Binary Search Tree
- 10. In ______ searching, the element to be found in searching the elements to be found is searched sequentially in the list.
 - A. Linear and Binary
 - B. Binary search
 - C. Heap
 - D. Linear search or sequential search
- 11. The process of finding the location of an element within the data structure is called _____.
- 12. _____ is a step-by-step procedure, which defines a set of instructions to be executed in a certain order to get the desired output.
- 13. _____ is a linear data structure that collects elements of the same data type and stores them in contiguous and adjacent memory locations.
- 14. _____ is a type of linked list in which a node contains a pointer to the previous as well as the next node in the sequence.
- 15. Backtracking is an application for _____.
- 16. _____ queue determines the order in which elements are served.
- 17. A _____ is a tree-type non-linear data structure with a maximum of

two children for each parent.

- 18. _____ is a special tree-based data structure in which the tree is a complete binary tree.
- 19. _____ is a sorting technique based on divide and conquer technique.
- 20. _____ data structure is a collection of nodes that have data and are connected to other nodes.

SECTION – B

Answer any FOUR questions

$4 \times 8 = 32 M$

- 21. Explain the concept of data structure and its operations with example.
 - 22. Define an Algorithm. Explain the characteristics of an algorithm.
 - 23. What is an Array? Write a program for addition of two matrices using two-dimensional array in C.
 - 24. Explain about Queue and its representation with example using C.
 - 25. What is a Binary tree? Demonstrate the types of trees with example.
 - 26. Write a program for merge sort with example using C.

SECTION - C

Answer any **FOUR** questions

4 x 12 = 48 M

- 27. Explain the concept of data types and its types.
- 28. Explain about single linked list and its operations with example using C.
- 29. Explain about Stack and its representation through arrays with example using C.
- 30. Demonstrate the operations on Binary Tree with examples.
- 31. Explain in detail about Binary search with example using C.
- 32. Discuss the terms associated with graphs. Explain about DFS with example using C.