SYLLABUS

Subject: Computer Science
Course Title: Practical - I
Max. Marks: 50

Semester: I
Course Code: COMPC054
Time: 3 Hrs.
Credits: 02

PYTHON - PROGRAMMING LAB LIST PROGRAMS

Section: A (Simple programs)

1. Write a menu driven program to convert the given temperature from

Fahrenheit to Celsius and vice versa depending upon user's choice.
2. WAP to calculate total marks, percentage and grade of a student. Marks obtained in each of the three subjects are to be input by the user. Assign grades according to the following criteria :

Grade A: Percentage >=80
Grade B: Percentage>=70 and <80
Grade C: Percentage>=60 and <70
Grade D: Percentage>=40 and <60
Grade E: Percentage<40
3. Write a menu-driven program, using user-defined functions to find the area of rectangle, square, circle and triangle by accepting suitable input parameters from user.
4. WAP to display the first n terms of Fibonacci series.
5. WAP to find factorial of the given number.
6. WAP to find sum of the following series for n terms: $1-2 / 2!+3 / 3$! n / n !
7. WAP to calculate the sum and product of two compatible matrices.

Section: B (Visual Python):

All the programs should be written using user defined functions, wherever possible.

1. Write a menu-driven program to create mathematical 3D objects
I. curve
II. sphere
III. cone
IV. arrow
V. ring
VI. Cylinder.
2. WAP to read n integers and display them as a histogram.
3. WAP to display sine, cosine, polynomial and exponential curves.
4. WAP to plot a graph of people with pulse rate p vs. height h. The values of p and h are to be entered by the user.
5. WAP to calculate the mass m in a chemical reaction. The mass m (in gms) disintegrates according to the formula $\mathrm{m}=60 /(\mathrm{t}+2)$, where t is the time in hours. Sketch a graph for t vs. m, where $t>=0$.
6. A population of 1000 bacteria is introduced into a nutrient medium. The population p grows as follows:
$\mathrm{P}(\mathrm{t})=(15000(1+\mathrm{t})) /(15+e)$ where the time t is measured in hours. WAP to determine the size of the population at given time t and plot a graph for P vs t for the specified time interval.
7. Input initial velocity and acceleration, and plot the following graphs depicting equations of motion:
I. velocity wrt time ($\mathrm{v}=\mathrm{u}+\mathrm{at}$)
II. distance wrt time ($\left.s=u^{*} t+0.5^{*} \mathrm{a}^{*} \mathrm{t}^{*} \mathrm{t}\right)$
III. distance wrt velocity ($s=\left(v^{*} v-u^{*} u\right) / 2^{*} a$)
